Proton Stacking in the Recycler **Chandra Bhat** Tuesday SNuMI Meeting High Intensity Protons April 4, 2006 #### Contents - Barrier bucket proton stacking schemes - Longitudinal Phase-space coating - Fast barrier compression technique - Momentum stacking (Griffin's scheme) # **Longitudinal Phase-space Coating** Scheme developed for Recycler pbar stacking during e-cool era C. M. Bhat, Beams-doc-2057-v1 (Dec. 2005) #### **Sequences of Longitudinal Phase Space Coating** ## Simulations of Phase-space Coating # Experimental Demonstration of Longitudinal Phase-space Coating (Video) **Work in progress** #### **Schottky Spectrum** # **Fast Bunch Compression** (EPAC2004, page 1479) Chandra Bhat*, Bill Foster*, Brian Chase, Jim MacLachlan*, Kiyomi Seiya, Phillip Varghese, Dave Wildman ### Physics of Fast Bunch Compression: Rotation of a bunch about rf stable and unstable point within a Barrier bucket 7 # Fast Bunch Compression: Symmetric Compression ESME Simulations ### Symmetric Compression Experimental Results: One Booster Batch Compression in the Recycler Injected Batch from Main Injector, Bunch Length=1.59 μsec #### **ESME** Predictions #### **Parameters:** Barrier Pulse = ±2kV, Ramp Voltage = ± 1kV Beam Intensity ~1.5E12p LE (initial) ~16 eVs, LE (final)= LE= 18 eVs ALE ~ 12% #### Experimental Results from studies in MI Peak RF Voltage: 500V Type of Ferrite: Not Known Shunt Impedancd: 50Ω Bandwidth ~50kHz-100MHz Dimension= 1.5meter Cost = not known # Fast Bunch Compression: Non--symmetric Compression #### **Experimental Demonstration** # **Fast Bunch Cogging** #### **Schematic View** # Advantages - May not need any MAJOR rf upgrades in the Recycler. - However, higher barrier rf voltage from ±2 kV to ±4 kV (±6 kV ?) is beneficial. (\$1M+) - − Higher rf voltage ← more compression - ← Faster cogging #### Issues - How to produce low energy spread beam in the Booster? - ideally speaking we need rectangular bunch from the booster (this should be produced without any emittance growth). Later I have given a possible scheme, which needs further work. - Recycler LLRF is capable of doing this sort of rf gymnastics. - Beam-loading is this a problem? - How do we adiabatically capture in 53 MHz buckets in the MI before acceleration #### **Booster Beam** De-bunching (Bunch Rotation) LE= 0.16 eVs Vrf(init.) = 350 kV Vrf (rotation) = 90kV (h=84)+40 kV(h= 168) ## **Booster Beam** Present Status (from Kiyomi) #### **Bunch Rotation off** # injection, BROFF, high intensity Entries 143641 of Mean x 0.2948 of Mean y -1.609 of RMS x 1.533 of RMS y 7.195 7.19 #### **Bunch Rotation on** Vrf ~ 450kV Vrf ~ 200kV #### **Future Plans** - If any of these techniques can be used for high intensity proton stacking in the Recycler then perform detailed simulations with beam-loading effects, - Figure out the stacking scheme this is like solving a "magic cube puzzle". - For example, we know that Recycler is about 11us long. Inject the three successive Booster batches 1,2 and 3 at bucket number 1, 168 and 336 of Recycler. Compress the batch-1 to the right and batch-2 to left to their half size (these are non-symmetric compressions). Start compression of the 3rd batch to the left so that we can inject 4th batch can be injected in between 1st and 3rd. And so on. In the meanwhile, one can merge 1st and 2nd compressed batched start (fast) cogging towards the 3rd batch. And so on. - Understand what are their limitations - Conduct some further experiments in the Recycler to workout the mechanics. This - So on.....